logo
today local_bar
Poster Session 6 West
Friday, December 13, 2024 4:30 PM → 7:30 PM
Poster #6501

There is No Silver Bullet: Benchmarking Methods in Predictive Combinatorial Optimization

Haoyu Geng, Hang Ruan, Runzhong Wang, Yang Li, YANG WANG, Lei Chen, Junchi Yan
Poster

Abstract

Predictive combinatorial optimization, where the parameters of combinatorial optimization (CO) are unknown at the decision-making time, is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising. Tackling such a problem usually involves a prediction model and a CO solver. These two modules are integrated into the predictive CO pipeline following two design principles: ''Predict-then-Optimize (PtO)'', which learns predictions by supervised training and subsequently solves CO using predicted coefficients, while the other, named ''Predict-and-Optimize (PnO)'', directly optimizes towards the ultimate decision quality and claims to yield better decisions than traditional PtO approaches. However, there lacks a systematic benchmark of both approaches, including the specific design choices at the module level, as well as an evaluation dataset that covers representative real-world scenarios. To this end, we develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for combinatorial advertising that will be released. Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO. A comprehensive categorization of current approaches and integration of typical scenarios are provided under a unified benchmark. Therefore, this paper could serve as a comprehensive benchmark for future PnO approach development and also offer fast prototyping for application-focused development.