logo
today local_bar
Poster Session 3 West
Thursday, December 12, 2024 11:00 AM → 2:00 PM
Spotlight Poster #6009

Stabilized Proximal-Point Methods for Federated Optimization

Xiaowen Jiang, Anton Rodomanov, Sebastian Stich

Abstract

In developing efficient optimization algorithms, it is crucial to account for communication constraints—a significant challenge in modern Federated Learning. The best-known communication complexity among non-accelerated algorithms is achieved by DANE, a distributed proximal-point algorithm that solves local subproblems at each iteration and that can exploit second-order similarity among individual functions. However, to achieve such communication efficiency, the algorithm requires solving local subproblems sufficiently accurately resulting in slightly sub-optimal local complexity. Inspired by the hybrid-projection proximal-point method, in this work, we propose a novel distributed algorithm S-DANE. Compared to DANE, this method uses an auxiliary sequence of prox-centers while maintaining the same deterministic communication complexity. Moreover, the accuracy condition for solving the subproblem is milder, leading to enhanced local computation efficiency. Furthermore, S-DANE supports partial client participation and arbitrary stochastic local solvers, making it attractive in practice. We further accelerate S-DANE and show that the resulting algorithm achieves the best-known communication complexity among all existing methods for distributed convex optimization while still enjoying good local computation efficiency as S-DANE. Finally, we propose adaptive variants of both methods using line search, obtaining the first provably efficient adaptive algorithms that could exploit local second-order similarity without the prior knowledge of any parameters.